Acids, Bases, and Salts

Chapter 15

Characteristics of Acids and Bases

- Acids
- sour when dilute (acetic acid, citric acid)
- burn skin when concentrated
- react with and neutralize bases
- react with some metals to form $\mathrm{H}_{2}(\mathrm{~g})$
- Bases
- bitter when dilute (quinine water, caffeine, milk of magnesia)
- corrosive when concentrated
- react with and neutralize acids

General Acid Base Definitions

	Arrhenius	Bronsted- Lowry
Acid	Forms H^{+}in solution	proton donor
Base	Forms OH^{-}in solution	proton acceptor

Acids

Form H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$in solution.

- $\mathrm{HA} \leftrightarrow \mathrm{H}^{+}+\mathrm{A}$
- or
- $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}$

$$
\mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Bases

Forms OH^{-1} in solution.

$\mathrm{BOH} \leftrightarrow \mathrm{B}^{+1}+\mathrm{OH}^{1}$ or
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{BH}^{+1}+\mathrm{OH}^{1}$

Conjugate acid-base pair

Acids

Hydrochloric acid

Sulfuric acid

Nitric acid

Acetic acid

Organic acids frequently contain a carboxylic acid group

Carboxylic acid group

Citric acid

Malic acid

Acids formula has H as first element

Binary
 contain only two elements

Oxyacids contain oxygen

Acid Nomenclature

- Binary Acids

Hydro

Base name of non-metal + "ic"

Acid

- HX hydrogen \qquad ide
- becomes
- Hydro
ic acid
- $\mathrm{HCl}(\mathrm{g})$ hydrogen chloride
- $\mathrm{HCl}(\mathrm{aq})$ hydrochloric acid
- $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ hydrogen sulfide
- $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$ hydrosulfuric acid
- $\mathrm{HCN}(\mathrm{g})$ hydrogen cyanide
- $\mathrm{HCN}(\mathrm{aq})$ hydrocyanic acid

Base name of
 oxyanion + "-ous"

Acid

Base name of
oxyanion + "-ic"

Oxyacid Nomenclature

- Hydrogen ___ate \rightarrow ___ic acid
- Hydrogen ___ite \rightarrow __ous acid
- Hydrogen per __ate \rightarrow per__ic acid
- Hydrogen hypo__ite \rightarrow hypo__ous acid
- $\mathrm{H}_{2} \mathrm{SO}_{4}$
- $\mathrm{H}_{2} \mathrm{SO}_{3}$
- $\mathrm{H}_{2} \mathrm{CO}_{3}$
- HClO
- $\mathrm{H}_{2} \mathrm{TeO}_{3}$
- HBrO_{4}
sulfuric acid
sulfurous acid
carbonic acid
hypochlorous acid tellurous acid
perbromic acid

Acid Base Reactions

- Conjugate acid base pair

$$
\mathrm{HA}+\mathrm{B} \leftrightarrows \mathrm{~A}+\mathrm{BH}^{+}
$$ acid base base acid

Acid HA \rightarrow Conjugate base A

- Base $\mathrm{B} \rightarrow$ Conjugate acid BH^{+}

$\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{HSO}_{4}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$

Acid

Base

Conjugate
base

Conjugate acid
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$

Base

Acid

Conjugate acid

Conjugate base

$\mathrm{HCO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}^{-}(a q)$
 Base
 \square
 Acid

 Conjugate
 acid
 Conjugate base

(Proton donor) (Proton acceptor)

- pH is a method used to describe the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}\left(\mathrm{H}^{+}\right)$in a solution easily.
- $\mathrm{pH}=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- where $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in $\mathrm{mol} / \mathrm{L}$ or molarity (M)

The pH scale

$\mathrm{pH}=7 \rightarrow$ neutral $\mathrm{pH}>7 \rightarrow$ basic solution $\mathrm{pH}<7 \rightarrow$ acidic solution

Acidic/Basic	pH	Example Solution
Strongly acidic		1 M HCI Stomach acid (1-3)
Weakly acidic	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Lemon juice Vinegar, wine Grapes, orange juice Normal rain, coffee Milk, pH balanced shampoo
Neutral	7	Pure water
Weakly basic	$\left(\begin{array}{c}8 \\ 9 \\ 10 \\ 11 \\ 12\end{array}\right.$	Eggs, seawater Baking soda, antacids Milk of magnesia, soap Household ammonia Liquid bleach
Strongly basic		Drain cleaner 1 M NaOH

Classify each of the following foods as acidic, basic or neutral

- egg white, $\mathrm{pH}=7.9$
- maple syrup, $\mathrm{pH}=7.0$
- champagne, $\mathrm{pH}=3,8$
- sour milk, $\mathrm{pH}=6.2$
- lime juice, $\mathrm{pH}=1.8$
- tomato juice, pH = 4.1
- What is the pH of A 0.10 M solution of HCl with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.10 \mathrm{M}$
- A bottle of table wine has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.2 \mathrm{x}$ $10^{-4} \mathrm{M}$. After one month the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$rises to $1.0 \times 10^{-3} \mathrm{M}$. Calculate the pH of the new and old bottle of wine and explain the changes observed.
- Calculate the pH of carrot juice with a hydronium ion $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration of 7.9 x $10^{-6} \mathrm{M}$.
- Calculate the pH of pea juice with a hydronium ion $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration of 3.9 x $10^{-7} \mathrm{M}$.
- What is the pH of pure water? $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$ $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$

In pure water

- $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{M}^{2}
$$

- What is the pH of a 0.10 M NaOH solution with [OH-] $=0.10 \mathrm{M}$?
- What is the pH of a 0.024 M NaOH solution?

pOH

$$
\mathrm{pOH}=\log [\mathrm{OH}]
$$

- What is the pOH of a solution that is 4.87 $\times 10^{-9} \mathrm{M}$ in NaOH ?
- What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration of a solution with $\mathrm{pH}=4.22$?

$\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]$	$\left[\mathrm{OH}^{-1}\right]$	pH	pOH
5.98×10^{-11}			
	9.63×10^{-5}		
		9.092	
			10.05

- How many mL of a 0.5223 M solution of NaOH is required to completely react with 3.457 g of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$?
- If 58.70 mL of HCl solution were used to titrate 1.077 g of NaOH , what was the molarity of the HCl solution?
- A 25.00 mL sample of vinegar was titrated with 23.55 mL of a 0.4233 M sodium hydroxide solution. What is the concentration of acetic acid in the vinegar solution?
- A 50.00 mL aliquot of phosphoric acid was titrated with 37.29 mL of 0.5277 M potassium hydroxide. Write the equation for the reaction that takes place and calculate the molarity of the phosphoric acid solution.

Buffers

- Compounds that help to maintain a constant pH
- Buffers work by reacting with both acids and bases

Bicarbonate Buffer

- Bicarbonate reacts with acid
- $\mathrm{HCO}_{3}{ }^{-1}+\mathrm{H}^{+1} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
- Bicarbonate reacts with base
- $\mathrm{HCO}_{3}^{-1}+\mathrm{OH}^{-1} \rightarrow \mathrm{CO}_{3}^{-2}$
- Both acid and base can be neutralized by bicarbonate

1980 to $1997 \mathrm{SO}_{2}$ Emissions from Utilities

